A versatile transposon-based activation tag vector system for functional genomics in cereals and other monocot plants.

نویسندگان

  • Shaohong Qu
  • Aparna Desai
  • Rod Wing
  • Venkatesan Sundaresan
چکیده

Transposon insertional mutagenesis is an effective alternative to T-DNA mutagenesis when transformation through tissue culture is inefficient as is the case for many crop species. When used as activation tags, transposons can be exploited to generate novel gain-of-function phenotypes without transformation and are of particular value in the study of polyploid plants where gene knockouts will not have phenotypes. We have developed an in cis-activation-tagging Ac-Ds transposon system in which a T-DNA vector carries a Dissociation (Ds) element containing 4x cauliflower mosaic virus enhancers along with the Activator (Ac) transposase gene. Stable Ds insertions were selected using green fluorescent protein and red fluorescent protein genes driven by promoters that are functional in maize (Zea mays) and rice (Oryza sativa). The system has been tested in rice, where 638 stable Ds insertions were selected from an initial set of 26 primary transformants. By analysis of 311 flanking sequences mapped to the rice genome, we could demonstrate the wide distribution of the elements over the rice chromosomes. Enhanced expression of rice genes adjacent to Ds insertions was detected in the insertion lines using semiquantitative reverse transcription-PCR method. The in cis-two-element vector system requires minimal number of primary transformants and eliminates the need for crossing, while the use of fluorescent markers instead of antibiotic or herbicide resistance increases the applicability to other plants and eliminates problems with escapes. Because Ac-Ds has been shown to transpose widely in the plant kingdom, the activation vector system developed in this study should be of utility more generally to other monocots.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Foxtail Mosaic Virus-Induced Gene Silencing in Monocot Plants.

Virus-induced gene silencing (VIGS) is a powerful technique to study gene function in plants. However, very few VIGS vectors are available for monocot plants. Here we report that Foxtail mosaic virus (FoMV) can be engineered as an effective VIGS system to induce efficient silencing of endogenous genes in monocot plants including barley (Hordeum vulgare L.), wheat (Triticum aestivum) and foxtail...

متن کامل

Construction and application of efficient Ac-Ds transposon tagging vectors in rice.

Transposons are effective mutagens alternative to T-DNA for the generation of insertional mutants in many plant species including those whose transformation is inefficient. The current strategies of transposon tagging are usually slow and labor-intensive and yield low frequency of tagged lines. We have constructed a series of transposon tagging vectors based on three approaches: (i) AcTPase con...

متن کامل

Gateway-compatible vectors for high-throughput gene functional analysis in switchgrass (Panicum virgatum L.) and other monocot species.

Switchgrass (Panicum virgatum L.) is a C4 perennial grass and has been identified as a potential bioenergy crop for cellulosic ethanol because of its rapid growth rate, nutrient use efficiency and widespread distribution throughout North America. The improvement of bioenergy feedstocks is needed to make cellulosic ethanol economically feasible, and genetic engineering of switchgrass is a promis...

متن کامل

Conservation, Divergence, and Genome-Wide Distribution of PAL and POX A Gene Families in Plants

Genome-wide identification and phylogenetic and syntenic comparison were performed for the genes responsible for phenylalanine ammonia lyase (PAL) and peroxidase A (POX A) enzymes in nine plant species representing very diverse groups like legumes (Glycine max and Medicago truncatula), fruits (Vitis vinifera), cereals (Sorghum bicolor, Zea mays, and Oryza sativa), trees (Populus trichocarpa), a...

متن کامل

Modification of vectors for functional genomic analysis in plants.

UNLABELLED Simple, efficient, and economical recombinant plant binary expression vectors for deciphering large-scale functional genomic research in plants and promoting crop improvement by genetically engineering and biotechnology is in great demand. In this research, using the pCHF3, pCAMBIA1301, pCAMBIA3300, pCAMBIA3301 vectors, we successfully constructed general plant binary expression vect...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plant physiology

دوره 146 1  شماره 

صفحات  -

تاریخ انتشار 2008